
Carlo Bertolli
Advanced Compiler Technology Team
IBM T.J. Watson Research Center
Technical Work by Gheorghe-Teodor “Doru” Bercea

Team: Kevin O’Brien, Samuel Antao, Alexandre Eichenberger, Arpith Jacob, Zehra
Sura, Tong Chen, Hyojin Sung, Georgios Rokos

DOE Centers of Excellence Performance Portability Meeting
April 20 2016

Performance Portability with
OpenMP on NVIDIA GPUs

Research Goals
• Obtain same GPU performance when writing CUDA and OpenMP 4

- What is the performance of a simple porting?

- Can I tune my application to match CUDA?

• Proxy application analysis: LULESH

- One of five DARPA challenge problems

- Represents code that accounts for 30% of the runtime on DoE/DoD supercomputers

- Already ported to CUDA

• Broad Strategy

• Look at many different kinds of applications

• Develop optimization schemes and mechanisms for each class

• Merge together in an optimizing compiler 2

• Not 1-to-1 mapping between CUDA and

OpenMP 3.1 versions

• CUDA hand-transformations:

- Loop interchange

- Loop fusion

- etc..

LULESH OpeMP 4.0

3

#pragma omp target data \
 map(to: p[:numElem], q[:numElem]) \
 map(from: sigxx[:numElem], sigyy[:numElem]) \
 map(from: sigzz[:numElem])
{
 #pragma omp target teams distribute parallel for
 for (Index_t i = 0 ; i < numElem ; ++i)
 {
 sigxx[i] = sigyy[i] = sigzz[i] = - p[i] - q[i] ;
 }
}

• Based on OpenMP 3.1 version

• target: offload to GPUs
• teams: use many CUDA blocks
• parallel: use many CUDA threads
• distribute and for: block loop and
schedule to blocks and threads

#pragma omp parallel for
for (Index_t i = 0 ; i < numElem ; ++i)
{
 sigxx[i] = sigyy[i] = sigzz[i] = - p[i] - q[i] ;
}

Data mapping

Basic OpenMP Implementation on NVIDIA GPUs
• Challenge: any OpenMP construct may be used within a

target region

• This includes arbitrary sequences of sequential and

parallel regions, tasks, locks, etc.

• General implementation scheme: control loop

4

#pragma omp target
{
 if(a[0]++ > K || b[1]++ < L) {
 #pragma omp parallel for
 for(int i = 0 ; i < K ; i++) {
 if(omp_get_thread_num() > 2) {
 #pragma omp simd
 for(int j = 0 ; j < L ; L++) { <S1> }
 } else {
 #pragma omp simd
 for(int j = 0 ; j < L ; L++) { <S2> }
 }
 } else {
 #pragma omp parallel for
 for(int i = 0 ; i < K ; i++) {
 <S3>
 }
 }

Basic OpenMP Implementation on NVIDIA GPUs
• Challenge: any OpenMP construct may be used within a

target region

• This includes arbitrary sequences of sequential and

parallel regions, tasks, locks, etc.

• General implementation scheme: control loop

• Ease of integration into clang without rewriting entire
C/C++ implementation is also a constraint

5

nextState = SQ1;
while(!finished) {
 switch(nextState) {
 case SQ1:
 if(tid > 0) break;
 // sequential reg. 1
 nextState = PR1;
 break;
 case PR1:
 if(tid > 4) break;
 // parallel reg. 1
 if (tid == 0) nextState = SQ2;
 break;
 case SQ2:
 if(tid > 0) break;
 // sequential reg. 2
 finished = true;
 break;
 }

 __syncthreads();
}

parallel
(all threads)

sequential
(1 thread)

sequential
(1 thread)CUDA threads

control

First Naive Runs

6

Cuda	Kernel	Region CUDA	
Runtime	(usec)

Control	Loop	
Runtime	(usec)

Acceleration	Calculation 3.2 712

Apply	Boundary	Acceleration 5.1 279

Position	and	Velocity	
Calculation 3.2 775	

598

Kinematics	and	Monotonic	
Gradient	Calculation 17

608	
2546	
1913

Monotonic	Region	
Calculation 11 3760

Apply	Material	Properties	to	
Regions 92

509	
619	
544

Two Missing Important Bits

• Uncoalesced Accesses:

- By default, OpenMP schedules loops by contiguous chunks

- Change default to schedule(static,1) assigns successive iterations to successive

threads within same blocks

• Tuning of number of blocks and block size per kernel

7

After First Tuning

8

Cuda	Kernel	Region CUDA	
Runtime	(usec)

Control	Loop	
Runtime	(usec)

Acceleration	Calculation 3.2 55

Apply	Boundary	Acceleration 5.1 43

Position	and	Velocity	
Calculation 3.2 54	

45

Kinematics	and	Monotonic	
Gradient	Calculation 17

511	
211	
140

Monotonic	Region	
Calculation 11 365

Apply	Material	Properties	to	
Regions 92

39	
529	
40

Occupancy / Register Allocation

• Many reasons:
- A while loop with a switch inside may hit hard register allocation
- In OpenMP 4.0 kernel parameters are passed as pointer to pointer
‣The kernel is allowed to do pointer arithmetic
‣This results in an additional register allocated for each parameter
‣Fixed by OpenMP 4.5 firstprivate-related rules

- NVCC and LLVM backends for NVPTX are different:
‣ nvcc uses libnvvm, which is shipped as a library
‣ LLVM uses the open source code in the trunk
‣Different optimization strategies

9

`

10

#pragma omp target teams distribute parallel for schedule(static,1) \
for(Index_t gnode=0 ; gnode<numNode ; ++gnode)
{
}

for (int i = threadIdx.x + blockIdx.x * blockDim.x;
 i < n; i += blockDim.x * gridDim.x) {

 g_node = i;

 // codegen loop body
 }

Compiler:
• Detect pragma combination
• Prove absence of nested pragmas
• Prove absence of function calls

CUDA-style notation
1-to-1 mapping of

CUDA grid to iteration space

Optimized Code Synthesis for Combined Construct

Performance of combined Construct

11

Cuda	Kernel	Region CUDA	
Runtime	(usec)

Control	Loop	
Runtime	(usec) %	diff

Acceleration	Calculation 3.2 4.3 35%

Apply	Boundary	Acceleration 5.1 4.8 -6%

Position	and	Velocity	
Calculation 3.2 4.8	

4.1 178%

Kinematics	and	Monotonic	
Gradient	Calculation 17

6.5	
58	
40

514%

Monotonic	Region	
Calculation 11 15 36%

Apply	Material	Properties	to	
Regions 92

3	
314	
3.1

247%

Small Kernels: Acceleration Calculation

12

Large Kernels

13

• Reduce loop count in OpenMP 3.0 (45) to about 18 in OpenMP 4.0 (simple fusion)
• Direct correspondences with CUDA still hard to come by for complex loops.
• Ideal candidate: loops applying material properties

Cuda	Kernel	Region CUDA	
Runtime	(usec)

Control	Loop	
Runtime	(usec)

Apply	Material	Properties	to	Regions 92
3	

314	
3.1

1. Fuse Loops

Apply	Material	Properties	to	Regions 92 525.6

2. Reorder values to have fewer divergent warps

Apply	Material	Properties	to	Regions 92 466.3

3. Loop over cells instead of regions

Apply	Material	Properties	to	Regions 92 102.8

Performance of Combined Construct

14

Cuda	Kernel	Region CUDA	
Runtime	(usec)

Control	Loop	
Runtime	(usec) %	diff

Acceleration	Calculation 3.2 4.3 35%

Apply	Boundary	Acceleration 5.1 4.8 -6%

Position	and	Velocity	
Calculation 3.2 4.8	

4.1 178%

Kinematics	and	Monotonic	
Gradient	Calculation 17

6.5	
58	
40

514%

Monotonic	Region	
Calculation 11 15 36%

Apply	Material	Properties	to	
Regions 92 102.8	 11%

PTXAS Report

15

Kernel
ID Kernel Name

K13 CalcKinematicsFor
Elems

K14 CalcMonotonicQGr
adientsForElems

Conclusion

• Good performance can be achieved for simpler kernels

- Requires optimized compiler synthesis

- How many patterns do we need?

• More complex kernels may require hand tuning over baseline

- Register allocation figure is of paramount importance

- Use libnvvm’s code synthesis to improve register allocation?

- Other factors like coalescing may play a relevant role in a “bad register allocation”
situation

16

Fallback

17

Large Loop Performance by Problem Size

18

Background

19

• Work by IBM’s Advanced Compiler Technology team

• OpenMP 4.0 implementation based on Clang/LLVM® compilation toolchain

• Targets node with IBM® Power® processors plus Nvidia® GPUs

- All tests on IBM 8247-42L system: Power 8 + Kepler K40m

• All tools available as open source

• IBM Proprietary OpenMP optimized implementation through Lightweight OpenMP library (LOMP)

- Lomp only available for OpenPower nodes and other IBM processors

• Ongoing implementation, transitioning to OpenMP 4.5

- Beta OpenMP 4.5 will be available to DoE Labs around mid-April

